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Introduction

• The rapid advancement of Artificial Intelligence (AI) brings unprecedentedtechnological growth.
• However, it also raises concerns regarding its environmental impact, especiallycarbon emissions.
• Our goal: To develop methodologies that balance high AI performance withminimal
environmental impact.
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Our contributions

• Novel sustainable ML pipeline: CEMAI offers a new approach to ML development,
environmentally-conscious workflows.

• Empirical evidence: Provides empirical evidence on the effectiveness of using carbonemissions as a metric for pipeline configuration and optimization.
• AI engineering dimensions for sustainability: Introduces new AI engineeringdimensions focused on sustainability, including energy measurement and carbon
emission measurement, fostering a shift towards more ecologically responsible AIengineering practices.
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ML pipeline
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CEMAI concept

Two core concepts:
• Green AI metrics
• Green pipeline orchestration
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CEMAI concept
Two core concepts:• Green AI metrics• Green pipeline orchestration

Figure: CEMAI concept
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Experiments

• RQ1: What are carbon emissions in different stages of the pipeline and can they beoptimized?
• RQ2: How does the choice of hardware affect the overall carbon emissions of thepipeline?
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Experiment design
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RQ1: What are carbon emissions in different stages of the pipeline and
can they be optimized?

Figure: Broaching use case 9 / 14



RQ1: What are carbon emissions in different stages of the pipeline and
can they be optimized?

• The train and evalute stages emit the most CO2 in our datasets
• Feature engineering adds emissions but can improve performance, and reducemodel complexity
• Incorporating Green AI metrics into the development process enables choosing
greenermodels with adequate performance
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RQ2 How does the choice of hardware affect the overall carbon emissions
of the pipeline?

• Hardware choice has significant influence
• Laptops consistently exhibit lower carbon emissions than the cloud server in ourexperiments
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Future Work and Implications

• Continual Learning: Exploring the integration of continual learning to adapt modelswith minimal environmental impact.
• Transfer Learning: Leveraging transfer learning strategies to minimize retraining andcomputational resources, thus reducing carbon emissions.
• Multi-objective Optimization: Future directions include developing algorithms foroptimizing both ML model performance and sustainability, balancing computationalefficiency with ecological responsibility.
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Conclusion

• CEMAI enables a balanced approach to ML model development
• Prioritizing both performance and reduced carbon footprint
• Call to Action: Encourages the adoption of CEMAI and similar practices to promotesustainability within the AI and machine learning fields.
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Technology for abetter society
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