

Engineering Carbon Emission-aware Machine Learning Pipelines

CAIN 2024

Erik Johannes Husom, Sagar Sen, Arda Goknil

April 15, 2024

Introduction

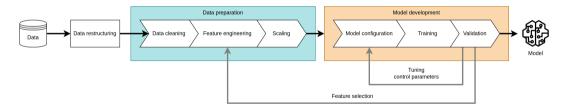
- The rapid advancement of **Artificial Intelligence (AI)** brings unprecedented technological growth.
- However, it also raises concerns regarding its **environmental impact**, especially carbon emissions.
- Our goal: To develop methodologies that balance **high AI performance** with **minimal environmental impact**.

Our contributions

- Novel sustainable ML pipeline: CEMAI offers a new approach to ML development, environmentally-conscious workflows.
- **Empirical evidence**: Provides empirical evidence on the effectiveness of using carbon emissions as a metric for pipeline configuration and optimization.
- Al engineering dimensions for sustainability: Introduces new AI engineering dimensions focused on sustainability, including *energy measurement* and *carbon emission measurement*, fostering a shift towards more ecologically responsible AI engineering practices.

ML pipeline

Machine learning pipeline



CEMAI concept

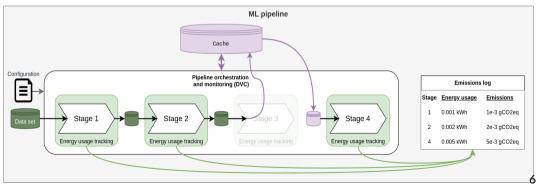
Two core concepts:

- Green Al metrics
- Green pipeline orchestration

CEMAI concept

Two core concepts:

- Green Al metrics
- Green pipeline orchestration



Experiments

- **RQ1**: What are carbon emissions in different stages of the pipeline and can they be optimized?
- **RQ2**: How does the choice of hardware affect the overall carbon emissions of the pipeline?

Experiment design

Dataset	Machine	Task	#Train	#Test
Piston Rod	Turning	Useful Lifetime	332,919	83,229
Broaching	Broaching	Tool wear	3,072,024	2,048,016
Bosch CNC	CNC	Anomaly	1,168,434	1,168,434

RQ1: What are carbon emissions in different stages of the pipeline and can they be optimized?

	Carbon emissions per stage (gCO ₂ eq)							1				
Model	Profile	Clean	Featurize	Split	Scale	Sequentialize	Combine	Train	Evaluate	Explain	Total	R ²
DT	0.1291	0.0197	0.0004	0.0001	0.0002	0.0021	0.0002	0.0113	0.0015	0.0601	0.2247	-1.22
DT w/FE	0.1291	0.0197	0.0083	0.0000	0.0000	0.0000	0.0002	0.0014	0.0015	0.0022	0.1625	0.91
RF	0.1291	0.0197	0.0026	0.0000	0.0002	0.0021	0.0002	1.1697	0.0000	0.0000	1.3237	0.76
RF w/FE	0.1291	0.0197	0.0083	0.0000	0.0000	0.0000	0.0002	0.0014	0.0017	0.0622	0.2227	0.83
GB	0.1291	0.0197	0.0034	0.0001	0.0003	0.0025	0.0002	0.1608	0.0059	0.0634	0.3859	0.12
GB w/FE	0.1291	0.0197	0.0083	0.0000	0.0000	0.0000	0.0000	0.0014	0.0018	0.0056	0.1662	0.92
XGB	0.1291	0.0197	0.0004	0.0001	0.0002	0.0021	0.0002	0.0336	0.0043	0.0829	0.1599	0.17
XGB w/FE	0.1291	0.0197	0.0055	0.0000	0.0000	0.0000	0.0000	0.0014	0.0015	0.0026	0.1599	0.70
DNN	0.1291	0.0197	0.0004	0.0001	0.0002	0.0004	0.0002	0.0317	0.0030	0.1631	0.3479 -	10.80
DNN w/FE	0.1291	0.0197	0.0067	0.0004	0.0036	0.0009	0.0015	0.0430	0.0031	0.1835	0.3915	0.48
CNN	0.1291	0.0197	0.0004	6.1989	0.0002	0.0004	0.0002	0.0016	0.0015	0.0601	0.2134	-0.08
CNN w/FE	0.1291	0.0197	0.0067	0.0004	0.0013	0.0022	0.0040	0.2112	0.0044	0.1323	0.5112	-0.04
LSTM	0.1291	0.0197	0.0004	0.0001	0.0002	0.0004	0.0002	8.3925	0.0240	0.4471	9.0137	-0.01
LSTM w/FE	0.1291	0.0197	0.0083	0.0000	0.0000	0.0034	0.0004	11.0341	0.0240	0.3863	11.6053	-0.08

Figure: Broaching use case

RQ1: What are carbon emissions in different stages of the pipeline and can they be optimized?

- The train and evalute stages emit the most CO2 in our datasets
- Feature engineering adds emissions but can improve performance, and reduce model complexity
- Incorporating Green AI metrics into the development process enables choosing *greener* models with adequate performance

RQ2 How does the choice of hardware affect the overall carbon emissions of the pipeline?

- Hardware choice has significant influence
- Laptops consistently exhibit lower carbon emissions than the cloud server in our experiments

		Carbon emissions (gCO ₂ eq)				
Case study	Model	Laptop (CPU)	Laptop (GPU)	Cloud		
Piston Rod	RF	0.2502	0.1977	1.1420		
Broaching	DT w/FE	0.1164	0.1625	0.6431		
Bosch CNC	DT w/FE	0.0349	0.0271	0.1608		

Future Work and Implications

- **Continual Learning**: Exploring the integration of continual learning to adapt models with minimal environmental impact.
- **Transfer Learning**: Leveraging transfer learning strategies to minimize retraining and computational resources, thus reducing carbon emissions.
- **Multi-objective Optimization**: Future directions include developing algorithms for optimizing both ML model performance and sustainability, balancing computational efficiency with ecological responsibility.

Conclusion

- CEMAI enables a balanced approach to ML model development
- Prioritizing both performance and reduced carbon footprint
- **Call to Action**: Encourages the adoption of CEMAI and similar practices to promote sustainability within the AI and machine learning fields.

Technology for a better society